

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International GCSE Chemistry (4CHO) Paper 1C Science Double Award (4SCO) Paper 1C

Pearson Edexcel Level 1/Level 2 Certificate Biology (KCHO) Paper 1C Science (Double Award) (KSCO) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4CH0_1C_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	B (condensation)		1
(b)	M1 (the particles/they) lose (kinetic) energy / have less energy	ACCEPT lose potential/heat energy	3
	M2 (the particles/they) move closer together / pack more closely	ACCEPT not as many gaps / smaller gaps REJECT refs to density	
	M3 (the particles/they) do not move as freely / move more slowly / move less randomly	ACCEPT molecules for particles	
	NB M1, M2 and M3 can be scored anywhere across the whole answer	REJECT atoms once only.	

Question number	Answer	Notes	Marks
2 (a)	A (argon)		1
(b)	CO ₂ / H ₂ O do not allow as part of an equation	IGNORE names even if correct	1
(c) (i)	M1 (the copper) reacts/combines with oxygen / oxidised	IGNORE bonds with oxygen IGNORE burns / combusts REJECT refs to rust	2
	M2 to form copper(II) oxide	ACCEPT copper oxide REJECT any other oxidation state	
(ii)	the volume of a gas changes with temperature / gas expands when hot/heated	ACCEPT reverse argument IGNORE refs to density	1
(iii)	all the oxygen has reacted / the oxygen has been used up / no oxygen (left to react)	DO NOT ACCEPT refs to 'not enough oxygen'	1
(d)	M1 (150 – 125) or 25 (cm ³)		2
	M2 (25/150) x 100 = 16.7 (%)	ACCEPT 17 / 16.67 / 16.6	
	OR		
	M1 100 x (125/150) = 83.3 (cm ³)	ACCEPT 83 / 83.33/ 83.3	
	M2 100 - 83.3 = 16.7 (%)	REJECT 16.6 for M2	
	M2 is cq on M1	correct answer (with no working) scores 2	

Question number	Answer	Notes	Marks
3 (a)	D (filtration)		1
(b) (i)	(chromatography) paper (original) position (of spot) solvent	award one mark for each correct label solvent: ALLOW label line to any point under the solvent level paper: ALLOW label line to paper, including under solvent level original spot: has to be in the centre of the baseline i.e. below the visible spots	3
(iiː	Four because there are four spots/dots (above the baseline in the chromatogram)	ALLOW blobs / marks / colours IGNORE refs to different heights	1

Question number	Answer	Notes	Marks
4 (a) (i)	Е		6
(ii)	В		
(iii)	F		
(iv)	С		
(v)	F		
(vi)	E		
(b) (i)	M1 (bonding/shared) electrons		2
	M2 nuclei	ACCEPT protons /	
	OR	nucleus(es)	
	M1 nuclei	ACCEPT	
	M2 bonding/shared electrons	nucleus(es)	
(ii)	A_2D / DA_2	ACCEPT H ₂ O	1
		REJECT if charges shown	

Question number	Ans	swer	Notes	Marks
5 (a)	Metal aluminium copper iron magnesium zinc	Highest temperature 42.0 25.0 29.0 46.5 31.5	M1 for magnesium and zinc M2 and M3 for other 3 metals – 1 mark for 2 correct, 2 marks for all 3 correct Penalise missing trailing 0 once only	3
(b) (i) (ii)	magnesium it/copper does not re	eact (with sulfuric	mark csq on table in (a) ACCEPT there is no	1
	acid)		reaction / the (sulfuric) acid does not react (with copper) IGNORE copper is unreactive	
(c)	M1 (change/rise in t be) less	emperature would	ACCEPT halved IGNORE any quoted temperatures	2
	M2 because there is volume/mass of be heated) OR	s a larger solution/liquid (to	ACCEPT there is more/twice as much solution/liquid to be heated	
	same (amount o to a larger numl	of) energy distributed ber of particles	ALLOW acid for solution/liquid REJECT the magnesium has to react with more acid M2 dep on M1	

Question number	Answer	Notes	Marks
6 (a) (i)	H*H	ACCEPT any combination of dots and crosses	1
	NB H does not need to be shown if touching / overlapping circles are shown	if overlapping / touching circles used both electrons must be within the overlapping/touching area	
(ii)	M1 weak forces (of attraction) between molecules / weak intermolecular forces	ACCEPT particles ACCEPT bonds for forces for both M1 and M2 ACCEPT correctly named IMF	2
	M2 (therefore) little (thermal/heat) energy required to overcome these forces / separate the molecules (into the gaseous state)	IGNORE more easily separated / easier to break	
	the gaseous state)	REJECT atoms for both M1 and M2	
		NB any mention of breaking covalent or ionic bonds scores 0	
(b) (i)	M1 atoms of the same element	atoms with same atomic number / atoms same number of protons	2
	M2 with different masses	different mass numbers / different numbers of neutrons	
		IGNORE references to electrons unless incorrect	
(ii)	1H 2H 3H protons 1 1 1 neutrons 0 1 2 electrons 1 1 1	one mark for each correct row	3

Question number	Answer	Notes	Marks
(c) (i)	exothermic		1
(ii)	$2H_2 + O_2 \rightarrow 2H_2O$	ACCEPT multiples and halves	2
	M1 all formulae correct	IGNORE state symbols even if	
	M2 balanced	incorrect	
(iii)	M1 (add to) <u>anhydrous/white</u> copper(II) sulfate	turns copper(II) sulfate from white to blue scores 2	2
	M2 turns blue		
	M2 dep on M1 or near miss	ACCEPT equivalent description of test with anhydrous cobalt(II) chloride (blue to pink)	
		IGNORE any references to testing with indicators	
(iv)	M1 measure/determine the boiling point	ACCEPT boil the water / heat until it boils	2
	M2 100°C	it boils at 100°C	
	OR	ALLOW "heat it and it boils at 100°C" for 2	
	M1 measure/determine the melting/freezing point	ACCEPT freeze the water / cool until it freezes	
	M2 0°C	it freezes at 0°C	
	OR	ALLOW "cool it and it freezes at 0°C" for 2	
	M1 measure/determine the density		
	M2 1 g/cm ³		

Question number	Answer	Notes	Marks
7 (a) (i)	Any two from: M1 calcium/solid/it disappears	ACCEPT dissolves / gets smaller IGNORE mass decreases	2
	M2 bubbles (of gas) / fizzing / effervescence	ACCEPT gas given off IGNORE hydrogen given off IGNORE incorrect gas / colour	
	M3 white solid (forms) / white suspension (forms) / (liquid) turns milky / (liquid) turns cloudy / white trails forms	ACCEPT <u>white</u> precipitate forms	
	M4 calcium moves (up and down)	IGNORE floats REJECT refs to moving on the surface	
	M5 water/solution/liquid gets warm	ACCEPT temperature of water/solution/ liquid rises IGNORE refs to heat released	
(ii)	M1 any value greater than 7	ACCEPT "greater than 7"	2
	M2 hydroxide <u>ions</u> /OH ⁻ are present / calcium hydroxide/Ca(OH) ₂ is an alkali / calcium hydroxide/Ca(OH) ₂ is a base	ACCEPT metal hydroxides are alkalis/bases IGNORE hydroxides are alkalis/bases	
	M2 dep on correct or missing M1	IGNORE calcium is an alkali metal	
(b)	M1 (Solid X) - CaO / calcium oxide	if both formula and name given both	3
	M2 (Solution Y) - CaCl ₂ / calcium chloride	must be correct	
	M3 (Solid Z) - CaCO ₃ / calcium carbonate	REJECT Ca(HCO ₃) ₂ / calcium hydrogencarbonate	

Question number	Answer	Notes	Marks
8 (a)	hydrated copper(II) sulfate open tube	ACCEPT a flame if >1 arrow drawn, all must be correct	1
	NB the arrow must point to the solid		
(b)	to condense the (water) vapour / steam	ACCEPT to cool the water vapour ACCEPT to cool/condense the gas (given off) IGNORE to condense the water IGNORE to stop the water escaping as water vapour IGNORE to condense the product	1
(c)	M1 $n(CuSO_4.5H_2O) = 2.50 \div 250$ OR 0.01 (mol)	mark csq throughout	3
	M2 $n(H_2O) = 0.01 \times 5$ OR 0.05 (mol)	correct final	
	M3 mass of water = $(0.05 \times 18) = 0.9(0)$ (g)	answer (with no working) scores 3	
	OR	ACCEPT calculations that	
	M1 5 x 18 OR 90	use A_r of Cu as 63.5 (giving	
	M2 250 (g) → 90 (g)	0.9(05) (g) as a final answer)	
	M3 2.50 (g) \rightarrow 0.9(0) (g)	M2 subsumes M1	
	OR	for all methods	
	M1 5 x 18 OR 90		
	M2 90 ÷ 250 x 100 (%) → 36 (%)		
	M3 36 (%) \times 2.50 (g) \rightarrow 0.9(0) (g)		

Question number	Answer	Notes	Marks
9 (a)	M1 & M2 all points plotted correctly, to the nearest gridline M3 best fit straight line through first 3 points drawn with the aid of a ruler M4 best fit straight line through last 6 points drawn with the aid of a ruler	deduct one mark for each incorrectly plotted point ALLOW M3 and M4 even if lines do not intersect	4
(b) (i)	value correctly read (± 0.25 cm³) to nearest gridline from candidate's graph (12.5 cm³ if correctly drawn)	Do not award these marks if lines do not cross	1
(ii)	value correctly read (± 0.1°C) to nearest gridline from candidate's graph (10°C if correctly drawn)		1

Question number	Answer	Notes	Marks
9 (c)	M1 (water) - to remove/flush out solution (X)		2
	M2 (solution Y) - to remove the water / avoid diluting solution Y	ACCEPT so that the only liquid in the burette is solution Y	
		IGNORE to remove impurities for both M1 and M2	
(d)	solution Y is less concentrated (than solution X)	IGNORE references to reactivity	1
	or solution (in Experiment 2) is less concentrated	ALLOW weaker / less strong instead of less concentrated IGNORE refs to more/less acidic ACCEPT reverse	

Question number	Answer	Notes	Marks
10 (a) (i)	Q R S P M1 Q and P correct		2
(ii)	M2 R and S correctM1 magnesium chlorideM2 hydrogenM1 and M2 can be in either order	ACCEPT correct formulae IGNORE incorrect formulae	2
(b)	M1 (add) (aqueous) silver nitrate / AgNO ₃	IGNORE refs to nitric acid do not award M1 if hydrochloric acid also added	2
	M2 white precipitate (forms)	M2 dep on mention of silver nitrate in M1	

Question number	Answer	Notes	Marks
11 (a)	propane		1
(b)	C ₄ H ₁₀	ACCEPT H ₁₀ C ₄	1
		penalise incorrect use of symbols and subscripts	
		REJECT structural and displayed formulae	
(C)	WXY	all three required	1
(d)	CH ₂	ACCEPT H ₂ C	1
(e)	M1 (unsaturated) contains a (carbon to carbon) double bond	REJECT C _n H _{2n} ACCEPT multiple bonds IGNORE refs to single bonds	3
	M2 (hydrocarbon) (compound/molecule/substance) contains (the elements/atoms) hydrogen and carbon	REJECT element/atom/ mixture for compound/ molecule/substance REJECT ions/molecules for elements/atoms	
	M3only	M3 dep on mention of hydrogen & carbon in M2 ACCEPT other equivalents e.g. solely, just, exclusively	
(f) (i)	H H H I I I H—C—C—C—Br I I I H H H	ACCEPT bromine in any position ACCEPT multiple substitutions ACCEPT correct	1
		displayed formula given as a product of an equation IGNORE any structural formula eg CH ₃ CH ₂ CH ₂ Br or molecular formula IGNORE H-Br	1
(ii)	UV / ultraviolet light/radiation	IGNORE references to heat / (high) temperature / (high) pressure	

Question number	Į.	Answer	Notes	Marks
12 (a)	M1 (Fe) 36.8 56	(Ti) (O) 31.6 31.6 48 16	Division by atomic number scores 0	3
	M2 0.66	0.66 1.98	ACCEPT any number of	
	M3 1	1 3	sig figs except one ALLOW 0.65, 0.65, 1.97	
	OR M1 calculation	of $M_{\rm r}$ of FeTi(3=152	
	M2 expression element e.g. Fe	on for % of <u>ea</u> e: 56 ÷ 152 x		
	M3 evaluation 36.8% Fe, 31.6		·	
(b)	M1 (element or M2 (reason) – combined with carbon dioxide M2 dep on M1	(it has) gaine	loss d/ ACCEPT oxidation state/	2
(c) (i)	TiCl ₄ + 2Mg - M1 all formula M2 balanced	G	ACCEPT multiples and halves IGNORE state symbols even if incorrect	2
(ii)	titanium / Ti / r reacts with oxy OR	gen	ACCEPT forms an oxide	
	titanium / Ti / r reacts with nitr	~	ACCEPT forms a nitride	
(iii)	magnesium chl more quickly / magnesium chl more of the ma in contact with	to help the <u>oride</u> to disso Ignesium chlo	reaction Ve / IGNORE refs to increasing	1

(d) (i)	M1 positive ions/cations/nuclei and delocalised electronsM2 attract (one another)M2 dep on M1	IGNORE metal ions ALLOW sea of electrons IGNORE free electrons any refs to ionic bonding, covalent bonding or IMFs	2
	'	scores zero	
(ii)	(delocalised) electrons can flow/move (through structure)/are mobile (when voltage/pd is applied)	IGNORE carry charge	1

Question number	Answer	Notes	Marks
13 (a)	$I_2 + CI_2 \rightarrow 2ICI$	ACCEPT halves and multiples	1
(b) (i)	M1 rate of forward reaction = rate of backwards reaction	ACCEPT both reactions occur at the same rate IGNORE forward reaction = backwards reaction	2
	M2 concentrations of reactants/ products remain constant	ACCEPT amounts/masses for concentrations ACCEPT don't change/stay for remain IGNORE concentrations/ amounts of reactants and products are the same/are equal ALLOW colour remains constant	
(ii)	M1 equilibrium has shifted to the left / equilibrium has shifted to the ICI side / equilibrium has shifted to the reactants side OR more ICI has been produced / more reactants have been produced	IGNORE references to Le Chatelier's principle e.g. an increase in temperature favours the endothermic reaction	2
	M2 an increase in temperature shifts the equilibrium in the endothermic direction	ACCEPT 'therefore the (backward) reaction is endothermic' for M2 if M1 has been awarded	

Question number	Answer			Notes	Marks
14 (a)	Solid KHCO ₃ K ₂ O KOH K ₂ CO ₃ all four correct = three correct = 1			ALLOW values (corrected rounded) from 1 sf up to calculator value	2
(b)	M1 equation 3 M2 the (mole) ration /reactant to pro-	o of KHCO ₃ to K ₂ CO ₃ oduct is 2:1	3	mark csq on amounts given in part (a)	2

Question number	Answer	Notes	Marks
15 (a)	Enthalpy change (of reaction)	ACCEPT heat (energy) change	1
(b)	M1 temperature rise = 23.5 (°C)	change	3
	M2 heat produced = 200 x 4.2 x 23.5	Penalise use of 0.725 / 200.725 / 199.275 g in M2 only	
	M3 = 20000(J) OR 20 kJ unit must be given <u>if answer in kJ</u>	ACCEPT 19740 / 19700 (J) ACCEPT 19.74(0) / 19.7(00) kJ IGNORE sign	
		mark consequentially throughout	
		correct answer (with no working) scores 3	
(c) (i)	(the reaction is) exothermic OR		1
	transfers heat/thermal energy to the surroundings / gives out heat/thermal energy	ACCEPT loses for gives out	
	OR OR	DO NOT ACCEPT just energy	
	gives out heat	ACCEPT loses for gives out	
(ii)	incomplete combustion/burning (of the butane)		1
	OR		
	(burns in a) limited supply of oxygen/air		
(iii)	less heat (energy) / thermal energy produced	ACCEPT less heat (energy) / thermal	1
	OR	energy transferred to the water	
	temperature rise less (than expected)	ALLOW soot has absorbed some of the heat (energy) / soot has acted as an insulator	
(iv)	heat/energy is lost to the air/ beaker/surroundings / water evaporates	ALLOW beaker is not insulated/has no lid ALLOW water is not stirred	1

Question number	Answer	Notes	Marks
16 (a)	to avoid loss of acid (spray) / solution / liquid OR	REJECT to avoid CaCO ₃ /solid escaping	1
	only gas/carbon dioxide can escape		
(b)	carbon dioxide / gas AND escapes / given off / released	REJECT incorrectly named gas	1
(c) (i)			2
(ii)		M2 dep on M1 ACCEPT ions REJECT atoms / molecules	3
		ACCEPT per unit time / per minute ACCEPT collision frequency increases IGNORE any refs to chance of collisions	